skip to main content

Title: Dynamics of laser induced metal nanoparticle and pattern formation

Discontinuous metal films are converted into either almost round, isolated, and randomly distributed nanoparticles (NPs) or fringed patterns of alternate non transformed film and NPs by exposure to single pulses (20 ns pulse duration and 193 nm wavelength) of homogeneous or modulated laser beam intensity. The dynamics of NPs and pattern formation is studied by measuring in real time the transmission and reflectivity of the sample upon homogeneous beam exposure and the intensity of the diffraction orders 0 and 1 in transmission configuration upon modulated beam exposure. The results show that laser irradiation induces melting of the metal either completely or at regions around intensity maxima sites for homogeneous and modulated beam exposure, respectively, within ≤10 ns. The aggregation and/or coalescence of the initially irregular metal nanostructures is triggered upon melting and continues after solidification (estimated to occur at ≤80 ns) for more than 1 μs. The present results demonstrate that real time transmission rather than reflectivity measurements is a valuable and easy-to-use tool for following the dynamics of NPs and pattern formation. They provide insights on the heat-driven processes occurring both in liquid and solid phases and allow controlling in-situ the process through the fluence. They also evidence that there is negligible lateral heatmore » release in discontinuous films upon laser irradiation.« less
Authors:
; ; ;  [1]
  1. Laser Processing Group, Instituto de Óptica, CSIC, Serrano 121, 28006 Madrid (Spain)
Publication Date:
OSTI Identifier:
22412608
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 6; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; AGGLOMERATION; COALESCENCE; DIFFRACTION; FILMS; LASER RADIATION; LIQUIDS; MELTING; METALS; NANOPARTICLES; NANOSTRUCTURES; RANDOMNESS; REFLECTIVITY; SOLIDIFICATION; SOLIDS