skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4883881· OSTI ID:22412472
;  [1]; ; ;  [2]
  1. Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada)
  2. Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7 (Canada)

Purpose: Phase analysis of single photon emission computed tomography (SPECT) radionuclide angiography (RNA) has been investigated for its potential to predict the outcome of cardiac resynchronization therapy (CRT). However, phase analysis may be limited in its potential at predicting CRT outcome as valuable information may be lost by assuming that time-activity curves (TAC) follow a simple sinusoidal shape. A new method, cluster analysis, is proposed which directly evaluates the TACs and may lead to a better understanding of dyssynchrony patterns and CRT outcome. Cluster analysis algorithms were developed and optimized to maximize their ability to predict CRT response. Methods: About 49 patients (N = 27 ischemic etiology) received a SPECT RNA scan as well as positron emission tomography (PET) perfusion and viability scans prior to undergoing CRT. A semiautomated algorithm sampled the left ventricle wall to produce 568 TACs from SPECT RNA data. The TACs were then subjected to two different cluster analysis techniques, K-means, and normal average, where several input metrics were also varied to determine the optimal settings for the prediction of CRT outcome. Each TAC was assigned to a cluster group based on the comparison criteria and global and segmental cluster size and scores were used as measures of dyssynchrony and used to predict response to CRT. A repeated random twofold cross-validation technique was used to train and validate the cluster algorithm. Receiver operating characteristic (ROC) analysis was used to calculate the area under the curve (AUC) and compare results to those obtained for SPECT RNA phase analysis and PET scar size analysis methods. Results: Using the normal average cluster analysis approach, the septal wall produced statistically significant results for predicting CRT results in the ischemic population (ROC AUC = 0.73;p < 0.05 vs. equal chance ROC AUC = 0.50) with an optimal operating point of 71% sensitivity and 60% specificity. Cluster analysis results were similar to SPECT RNA phase analysis (ROC AUC = 0.78, p = 0.73 vs cluster AUC; sensitivity/specificity = 59%/89%) and PET scar size analysis (ROC AUC = 0.73, p = 1.0 vs cluster AUC; sensitivity/specificity = 76%/67%). Conclusions: A SPECT RNA cluster analysis algorithm was developed for the prediction of CRT outcome. Cluster analysis results produced results equivalent to those obtained from Fourier and scar analysis.

OSTI ID:
22412472
Journal Information:
Medical Physics, Vol. 41, Issue 7; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English