skip to main content

SciTech ConnectSciTech Connect

Title: Modulations of the plasma uniformity by low frequency sources in a large-area dual frequency inductively coupled plasma based on fluid simulations

As the wafer size increases, dual frequency (DF) inductively coupled plasma (ICP) sources have been proposed as an effective method to achieve large-area uniform plasma processing. A two-dimensional (2D) self-consistent fluid model, combined with an electromagnetic module, has been employed to investigate the influence of the low frequency (LF) source on the plasma radial uniformity in an argon DF discharge. When the DF antenna current is fixed at 10 A, the bulk plasma density decreases significantly with the LF due to the less efficient heating, and the best radial uniformity is obtained at 3.39 MHz. As the LF decreases to 2.26 MHz, the plasma density is characterized by an edge-high profile, and meanwhile the maximum of the electron temperature appears below the outer two-turn coil. Moreover, the axial ion flux at 3.39 MHz is rather uniform in the center region except at the radial edge of the substrate, where a higher ion flux is observed. When the inner five-turn coil frequency is fixed at 2.26 MHz, the plasma density profiles shift from edge-high over uniform to center-high as the LF coil current increases from 6 A to 18 A, and the best plasma uniformity is obtained at 14 A. In addition, the maximum of the electron temperature becomesmore » lower with a second peak appears at the radial position of r = 9 cm at 18 A.« less
Authors:
; ; ;  [1]
  1. Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
Publication Date:
OSTI Identifier:
22410352
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 22; Journal Issue: 5; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ANTENNAS; ARGON; ELECTRON TEMPERATURE; FLOW MODELS; FREQUENCY MODULATION; HEATING; MHZ RANGE; PLASMA DENSITY; TWO-DIMENSIONAL CALCULATIONS