skip to main content

Title: Effect of heterostructure design on carrier injection and emission characteristics of 295 nm light emitting diodes

The effects of the heterostructure design on the injection efficiency and external quantum efficiency of ultraviolet (UV)-B light emitting diodes (LEDs) have been investigated. It was found that the functionality of the Al{sub x}Ga{sub 1−x}N:Mg electron blocking layer is strongly influenced by its aluminum mole fraction x and its magnesium doping profile. By comparing LED electroluminescence, quantum well photoluminescence, and simulations of LED heterostructure, we were able to differentiate the contributions of injection efficiency and internal quantum efficiency to the external quantum efficiency of UV LEDs. For the optimized heterostructure using an Al{sub 0.7}Ga{sub 0.3}N:Mg electron blocking layer with a Mg to group III ratio of 4% in the gas phase the electron leakage currents are suppressed without blocking the injection of holes into the multiple quantum well active region. Flip chip mounted LED chips have been processed achieving a maximum output power of 3.5 mW at 290 mA and a peak external quantum efficiency of 0.54% at 30 mA.
Authors:
; ; ; ; ; ; ;  [1] ; ; ;  [2] ;  [1] ;  [3]
  1. Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany)
  2. Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)
  3. (Germany)
Publication Date:
OSTI Identifier:
22410237
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 19; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALUMINIUM; CHANNELING; CHARGE CARRIERS; COMPARATIVE EVALUATIONS; DEPLETION LAYER; ELECTROLUMINESCENCE; ELECTRONS; HOLES; LEAKAGE CURRENT; LIGHT EMITTING DIODES; MAGNESIUM; PHOTOLUMINESCENCE; QUANTUM EFFICIENCY; QUANTUM WELLS; ULTRAVIOLET RADIATION