skip to main content

Title: Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation.
Authors:
; ; ;  [1] ; ;  [2]
  1. Institute of Physics, Goethe-University Frankfurt, Frankfurt/Main (Germany)
  2. Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai (Japan)
Publication Date:
OSTI Identifier:
22410044
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; COBALT; COERCIVE FORCE; DEPOSITION; ELECTRON BEAMS; HALL EFFECT; HYSTERESIS; LIFETIME; MAGNETIC FIELDS; MAGNETIZATION; NANOSTRUCTURES; PERTURBATION THEORY; SPIN; STATISTICS; TEMPERATURE DEPENDENCE