skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TH-C-12A-01: Develop a Patient-Specific QA Program for Radiation Therapy with On-Board MRI

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4889638· OSTI ID:22409918
; ; ; ; ; ; ;  [1]
  1. Washington University in St Louis, St Louis, MO (United States)

Purpose: This work describes development of the first patient-specific quality assurance (QA) program for magnetic resonance imaging guided radiation therapy (MR-IGRT). Methods: The program consisted of following components: 1) multipoint ionization chamber (IC) measurement using a 15 cm3 cubic phantom, 2) 2D stacked radiographic film dosimetry using a 30×30×20 cm3 phantom with multiple inserted ICs, 3) 3D ArcCHECK measurement with a centrally inserted IC, 4) machine delivery file verification, 5) 3D Monte-Carlo dose re-calculation with machine delivery file and phantom CT, 6) 2-head mode delivery validation in case of a malfunctioning head, and 7) independent beam-on time calculation for non-IMRT fields. Both ADCL calibrated ICs and ArcCHECK were MRI compatible. Experimental data were analyzed for the first 10 patients treated at our institution. Results: The customized phantoms allowed measuring multiple points with ICs in one delivery. Absolute IC measurements were all within 3% in all phantom geometry/shape/material combinations. Despite known uncertainty associated with film dosimetry, passing rates greater than 90% were achieved in both absolute and composite modes using TG-129 criteria. Due to the simultaneous irradiation by three radiation sources, ArcCHECK was used as a 3D relative dosimeter with angular and energy dependences uncorrected. 95–100% passing rates were obtained and the centrally inserted IC measurement assured that the overall dose normalization was within 3%. Machine delivery file verification and MC recalculated dose to the phantom results showed 98–100% passing rates, providing opportunity of moving from gamma passing rates to patient DVHbased QA metrics. Same results were obtained for the 2-head delivery mode. Manual beam-on time calculation for non-IMRT fields showed better than 5% agreement. Conclusion: We have successfully developed the first MRIGRT patient specific QA program by adopting experimental and computational dosimetry methods that were developed in the past decade for other radiation therapy modalities.

OSTI ID:
22409918
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English