skip to main content

Title: TH-C-19A-12: Two-Dimensional High Spatial-Resolution Dosimeter Using Europium Doped Potassium Chloride

Purpose: Recent research has shown that KCl:Eu2+ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports our attempts to fabricate 2D KCl:Eu2+ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. Methods: A thin layer of KCl:Eu2+ was deposited on a substrate of borosilicate glass (e.g., laboratory slides) with a PVD system. For tape casting, a homogenous suspension containing storage phosphor particles, liquid vehicle and polymer binder was formed and subsequently cast by doctor-blade onto a polyethylene terephthalate substrate to form a 150 μm thick SPF. Results: X ray diffraction analysis showed that a 10 μm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had completed been incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl−) centers were the electron storage centers post x ray irradiation and that Eu2+ cations acted as luminescence centers in the photostimulation process. The 150 μm thick casted KCl:Eu2+ SPF showed sub-millimeter spatial resolution. Monte Carlo simulations further demonstrated that the admixturemore » of 20% KCl:Eu2+ and 80% low Z polymer binder exhibited almost no energy dependence in a 6 MV beam. KCl:Eu2+ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a Result of its intrinsic high radiation hardness. Conclusions: This discovery research provides strong evidence that KCl:Eu2+ based SPF with associated readout apparatus could Result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of each detector. This work was supported in part by NIH Grant No. R01CA148853. The authors would like to thank Paul Leblans (AGFA Healthcare, Belgium) for many helpful discussions on this topic.« less
Authors:
; ;  [1] ;  [2] ;  [3] ;  [4]
  1. Washington University School of Medicine, St. Louis, MO (United States)
  2. University of Nebraska Medical Center, Omaha, NE (United States)
  3. Brigham and Womens Hospital and Harvard Medical School, Boston, MA (United States)
  4. UCLA, Los Angeles, CA (United States)
Publication Date:
OSTI Identifier:
22409836
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; COMPUTERIZED SIMULATION; DOPED MATERIALS; DOSEMETERS; DOSIMETRY; ENERGY DEPENDENCE; EUROPIUM; MONTE CARLO METHOD; PHOTOLUMINESCENCE; PHYSICAL VAPOR DEPOSITION; POLYESTERS; POTASSIUM CHLORIDES; RADIATION HARDNESS; RADIOTHERAPY; READOUT SYSTEMS; SPATIAL RESOLUTION; THIN FILMS; X-RAY DIFFRACTION