skip to main content

SciTech ConnectSciTech Connect

Title: From charge motion in general magnetic fields to the non perturbative gyrokinetic equation

The exact analytical description of non relativistic charge motion in general magnetic fields is, apparently, a simple problem, even if it has not been solved until now, apart for rare cases. The key feature of the present derivation is to adopt a non perturbative magnetic field description to find new solutions of motion. Among all solutions, two are particularly important: guiding particle and gyro-particle solutions. The guiding particle has been characterized to be minimally coupled to the magnetic field; the gyro-particle has been defined to be maximally coupled to the magnetic field and, also, to move on a closed orbit. The generic charged particle motion is shown to be expressed as the sum of such particular solutions. This non perturbative approach corresponds to the description of the particle motion in the gyro-center and/or guiding center reference frame obtained at all the orders of the modern gyro-center transformation. The Boltzmann equation is analyzed with the described exact guiding center coordinates. The obtained gyrokinetic equation is solved for the Boltzmann equation at marginal stability conditions.
Authors:
 [1]
  1. ENEA Unità tecnica Fusione, C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Rome (Italy)
Publication Date:
OSTI Identifier:
22408287
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 22; Journal Issue: 4; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; BOLTZMANN EQUATION; CHARGED PARTICLES; KINETICS; MAGNETIC FIELDS; MATHEMATICAL SOLUTIONS; PARTICLES; RELATIVISTIC RANGE