skip to main content

Title: Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes

A new fast global eigenvalue code, where the terms are segregated according to their physics contents, is developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved criterion for the RSAE existence is given for with and without the parallel equilibrium current. In the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable factor for the existence of the RSAE, which is however usually small. This suggests that it is necessary to include additional physics such as kinetic term in the MHD model to overcome the strong unfavorable effect of the parallel current in order to enable the existence of RSAE.
Authors:
;  [1]
  1. Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310027 (China)
Publication Date:
OSTI Identifier:
22408113
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 22; Journal Issue: 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ALFVEN WAVES; CURRENTS; EIGENVALUES; MAGNETOHYDRODYNAMICS; PLASMA; REVERSED SHEAR; TOKAMAK DEVICES