skip to main content

Title: Cutoff frequency of toroidal plasma waveguide

The cutoff frequencies of E and H-modes of empty and plasma filled toroidal waveguides are evaluated. The effects of space curvature and plasma density on cutoff frequencies for both modes are investigated. Using a suitable variable change, a scalar wave equation in the direction of propagation was obtained. The study indicates that the curvature in the direction of wave propagation in toroidal waveguide has an analogous effect as a straight waveguide filled with anisotropic media. The Rayleigh-Schrodinger perturbation method was employed to solve for cutoff frequencies in the first order of approximation. In the limit of small space curvature, the toroidal waveguide cutoff frequencies for both E and H-modes approach those of TM and TE modes of empty cylindrical waveguide with a radius equal to toroidal waveguide minor radius. The analysis shows that the curvature in the direction of propagation in toroidal waveguides leads to the removal of the degeneracy between E and H-modes.
Authors:
;  [1]
  1. Department of Physics, University of Tehran, Tehran 14399 (Iran, Islamic Republic of)
Publication Date:
OSTI Identifier:
22408074
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 22; Journal Issue: 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ANISOTROPY; CYLINDRICAL CONFIGURATION; DISTURBANCES; H-MODE PLASMA CONFINEMENT; PLASMA DENSITY; TOROIDAL CONFIGURATION; WAVE EQUATIONS; WAVEGUIDES