skip to main content

Title: TU-F-12A-09: GLCM Texture Analysis for Normal-Tissue Toxicity: A Prospective Ultrasound Study of Acute Toxicity in Breast-Cancer Radiotherapy

Purpose: To evaluate the morphologic and structural integrity of the breast glands using sonographic textural analysis, and identify potential early imaging signatures for radiation toxicity following breast-cancer radiotherapy (RT). Methods: Thirty-eight patients receiving breast RT participated in a prospective ultrasound imaging study. Each participant received 3 ultrasound scans: 1 week before RT (baseline), and at 6-week and 3-month follow-ups. Patients were imaged with a 10-MHz ultrasound on the four quadrant of the breast. A second order statistical method of texture analysis, called gray level co-occurrence matrix (GLCM), was employed to assess RT-induced breast-tissue toxicity. The region of interest (ROI) was 28 mm × 10 mm in size at a 10 mm depth under the skin. Twenty GLCM sonographic features, ratios of the irradiated breast and the contralateral breast, were used to quantify breast-tissue toxicity. Clinical assessment of acute toxicity was conducted using the RTOG toxicity scheme. Results: Ninety-seven ultrasound studies (776 images) were analyzed; and 5 out of 20 sonographic features showed significant differences (p < 0.05) among the baseline scans, the acute toxicity grade 1 and 2 groups. These sonographic features quantified the degree of tissue damage through homogeneity, heterogeneity, randomness, and symmetry. Energy ratio value decreased from 108±0.05more » (normal) to 0.99±0.05 (Grade 1) and 0.84±0.04 (Grade 2); Entropy ratio value increased from 1.01±0.01 to 1.02±0.01 and 1.04±0.01; Contrast ratio value increased from 1.03±0.03 to 1.07±0.06 and 1.21±0.09; Variance ratio value increased from 1.06±0.03 to 1.20±0.04 and 1.42±0.10; Cluster Prominence ratio value increased from 0.98±0.02 to 1.01±0.04 and 1.25±0.07. Conclusion: This work has demonstrated that the sonographic features may serve as imaging signatures to assess radiation-induced normal tissue damage. While these findings need to be validated in a larger cohort, they suggest that ultrasound imaging may be used to improve early detection of normal-tissue toxicity in breast-cancer RT.« less
Authors:
; ; ;  [1]
  1. Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA (United States)
Publication Date:
OSTI Identifier:
22407853
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; MAMMARY GLANDS; MHZ RANGE 01-100; NEOPLASMS; PATIENTS; RADIOTHERAPY; SKIN; TOXICITY; ULTRASONOGRAPHY