skip to main content

Title: Sci—Fri PM: Dosimetry—04: Radiation out-of-field dose in the treatment of pediatric central nervous system malignancies

Children diagnosed with central nervous system (CNS) malignancies often receive radiotherapy, which can cause radiogenic late effects. In order to identify and reduce the risk of these late effects, we must understand the radiation doses that these children receive. Modern treatment planning systems accurately estimate the absorbed dose within the treatment fields but poorly estimate the dose outside them. The purpose of our study was to measure the out-of-field dose for children receiving localized radiotherapy for CNS cancer and apply an analytical model for estimating dose as a function of distance from the field edge. Radiation fields designed for a 12-year-old boy treated in our clinic were applied to an anthropomorphic phantom containing more than 200 thermoluminescent dosimeters. A double-Gaussian function of absorbed dose versus distance from the field edge (i.e., 50% isodose line) was applied, and parameters were allowed to vary and were fit to the model by minimizing the root mean square deviation, RMSD. The fitted model accurately predicted the dose from distances of 4 cm to 50 cm (RMSD = 0.54 cGy/Gy), but the model was not useful in estimating dose for distances less than 4 cm because of wide variation in measured dose, and the double-Gaussianmore » model failed by systematically underestimating the dose beyond 50 cm. In conclusion, the double-Gaussian model may be applicable for points at distances from the field edge between 4 cm and 50 cm, where most children's radiosensitive tissues are located, but for points beyond 50 cm, an improvement should be investigated.« less
Authors:
; ; ; ; ; ;  [1]
  1. Department of Radiation Oncology, American University of Beirut Medical Center, Beirut (Lebanon)
Publication Date:
OSTI Identifier:
22407715
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ABSORBED RADIATION DOSES; CENTRAL NERVOUS SYSTEM; CHILDREN; DELAYED RADIATION EFFECTS; DIAGNOSIS; DOSIMETRY; NEOPLASMS; PHANTOMS; PLANNING; RADIOTHERAPY; THERMOLUMINESCENT DOSEMETERS