skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Poster — Thur Eve — 71: A 4D Multimodal Lung Phantom for Regmentation Evaluation

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4894931· OSTI ID:22407693
 [1];  [2];  [1]
  1. McGill University, Physics, Montreal QC (Canada)
  2. McGill University, Oncology, Montreal QC (Canada)

Segmentation and registration of medical imaging data are two processes that can be integrated (a process termed regmentation) to iteratively reinforce each other, potentially improving efficiency and overall accuracy. A significant challenge is presented when attempting to validate the joint process particularly with regards to minimizing geometric uncertainties associated with the ground truth while maintaining anatomical realism. This work demonstrates a 4D MRI, PET, and CT compatible tissue phantom with a known ground truth for evaluating registration and segmentation accuracy. The phantom consists of a preserved swine lung connected to an air pump via a PVC tube for inflation. Mock tumors were constructed from sea sponges contained within two vacuum-sealed compartments with catheters running into each one for injection of radiotracer solution. The phantom was scanned using a GE Discovery-ST PET/CT scanner and a 0.23T Phillips MRI, and resulted in anatomically realistic images. A bifurcation tracking algorithm was implemented to provide a ground truth for evaluating registration accuracy. This algorithm was validated using known deformations of up to 7.8 cm using a separate CT scan of a human thorax. Using the known deformation vectors to compare against, 76 bifurcation points were selected. The tracking accuracy was found to have maximum mean errors of −0.94, 0.79 and −0.57 voxels in the left-right, anterior-posterior and inferior-superior directions, respectively. A pneumatic control system is under development to match the respiratory profile of the lungs to a breathing trace from an individual patient.

OSTI ID:
22407693
Journal Information:
Medical Physics, Vol. 41, Issue 8; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English