skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and Characterization of Urchin-like Mischcrystal TiO{sub 2} and Its Photocatalysis

Journal Article · · Materials Characterization
 [1];  [2];  [2];  [1];  [2];  [1]
  1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)
  2. School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

The urchin-like mischcrystal TiO{sub 2} using acid attapulgite as an introducer was synthesized after a subsequent low-temperature hydrolyzation and crystallization followed by removal of acid attapulgite. The samples were characterized by transmission electron microscope, X-ray diffraction, Fourier transform infrared spectra and X-ray photoelectron spectroscopy. Acid attapulgite plays a critical role in the morphology and crystal structure of TiO{sub 2}. The results suggest that the perfect urchin-like mischcrystal TiO{sub 2} is fabricated when the mass ratio of TiO{sub 2} and acid attapulgite is 0.7:1. The single urchin-like TiO{sub 2} is comprised of a nanosphere and plentiful nanoneedles. The nanoneedles grow radially on the surface of the nanosphere. The urchin-like TiO{sub 2} is around 100 nm, and the nanoneedles have a diameter ranging from 2 to 5 nm. It has been confirmed that the chemical groups of acid attapulgite have a significant influence on the growth of TiO{sub 2}. In addition, the urchin-like mischcrystal TiO{sub 2} exhibits excellent activity to assist photodegradation of Rhodamine B aqueous solution under ultraviolet light, and the degradation rate is about 94.15% for 80 min. The photocatalytic kinetics can be well described by the pseudo-first rate equation. - Highlights: • Acid attapulgite (HATP) is acted as a sacrificial introducer. • The urchin-like mischcrystal TiO{sub 2} is produced by a low-temperature method. • The morphology and crystal are controllable with the dosage of HATP. • The fabricated TiO{sub 2} exhibits excellent photocatalysis for Rhodamine B.

OSTI ID:
22403571
Journal Information:
Materials Characterization, Vol. 96; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English