skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of V addition on recrystallization resistance of 7150 aluminum alloy after simulative hot deformation

Journal Article · · Materials Characterization

The effects of different V contents (0.01 to 0.19 wt.%) on the recrystallization resistance of 7150 aluminum alloys during post-deformation heat treatment were investigated. The microstructural evolutions at as-cast, as-homogenized conditions and after post-deformation annealing were studied using optical, scanning electron and transmission electron microscopes and using the electron backscattered diffraction technique. The precipitation of Al{sub 21}V{sub 2} dispersoids was observed in alloys containing 0.11 to 0.19 wt.% V after homogenization. The dispersoids were mainly distributed in the dendrite cells, and the precipitate-free zones occurred in the interdendritic regions and near grain boundaries. V addition could significantly enhance the recrystallization resistance during post-deformation annealing, particularly in the presence of a great number of Al{sub 21}V{sub 2} dispersoids. Recrystallized grain growth was effectively restricted because of the dispersoid pinning effect. The alloy containing 0.15 wt.% V exhibited the highest recrystallization resistance amongst all V-containing alloys studied. - Highlights: • Investigated the effect of V level on microstructure and flow stress of 7150 alloys • Characterized microstructures using optical microscopy, SEM, TEM and EBSD • Described the precipitation behavior of V-dispersoids in the dendritic structure • Studied the V effect on recrystallization resistance during post heat treatment • V addition greatly enhanced the recrystallization resistance during annealing.

OSTI ID:
22403568
Journal Information:
Materials Characterization, Vol. 96; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English