skip to main content

Title: Two charges on plane in a magnetic field: III. He{sup +} ion

The He{sup +} ion on a plane subject to a constant magnetic field B perpendicular to the plane is considered taking into account the finite nuclear mass. Factorization of eigenfunctions permits to reduce the four-dimensional problem to three-dimensional one. The ground state energy of the composite system is calculated in a wide range of magnetic fields from B=0.01 up to B=100a.u. and center-of-mass Pseudomomentum K from 0 to 1000 a.u. using a variational approach. The accuracy of calculations for B=0.1a.u. is cross-checked in Lagrange-mesh method and not less than five significant figures are reproduced in energy. Similarly to the case of moving neutral system on the plane a phenomenon of a sharp change of energy behavior as a function of K for a certain critical K{sub c} but a fixed magnetic field occurs.
Authors:
Publication Date:
OSTI Identifier:
22403494
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics (New York); Journal Volume: 351; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACCURACY; CENTER-OF-MASS SYSTEM; EIGENFUNCTIONS; FACTORIZATION; FOUR-DIMENSIONAL CALCULATIONS; GROUND STATES; HELIUM IONS; MAGNETIC FIELDS; MASS; THREE-DIMENSIONAL CALCULATIONS; VARIATIONAL METHODS