skip to main content

SciTech ConnectSciTech Connect

Title: Twisted injectivity in projected entangled pair states and the classification of quantum phases

We introduce a class of projected entangled pair states (PEPS) which is based on a group symmetry twisted by a 3-cocycle of the group. This twisted symmetry is expressed as a matrix product operator (MPO) with bond dimension greater than 1 and acts on the virtual boundary of a PEPS tensor. We show that it gives rise to a new standard form for PEPS from which we construct a family of local Hamiltonians which are gapped, frustration-free and include fixed points of the renormalization group flow. Based on this insight, we advance the classification of 2D gapped quantum spin systems by showing how this new standard form for PEPS determines the emergent topological order of these local Hamiltonians. Specifically, we identify their universality class as DIJKGRAAF–WITTEN topological quantum field theory (TQFT). - Highlights: • We introduce a new standard form for projected entangled pair states via a twisted group symmetry which is given by nontrivial matrix product operators. • We construct a large family of gapped, frustration-free Hamiltonians in two dimensions from this new standard form. • We rigorously show how this new standard form for low energy states determines the emergent topological order.
Authors:
Publication Date:
OSTI Identifier:
22403479
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics (New York); Journal Volume: 351; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; HAMILTONIANS; MATRICES; QUANTUM ENTANGLEMENT; QUANTUM FIELD THEORY; QUANTUM STATES; RENORMALIZATION; SPIN; SYMMETRY; TENSORS; TOPOLOGY