skip to main content

SciTech ConnectSciTech Connect

Title: Simulations of the L-H transition on experimental advanced superconducting Tokamak

We have simulated the L-H transition on the EAST tokamak [Baonian Wan, EAST and HT-7 Teams, and International Collaborators, “Recent experiments in the EAST and HT-7 superconducting tokamaks,” Nucl. Fusion 49, 104011 (2009)] using a predictive transport code where ion and electron temperatures, electron density, and poloidal and toroidal momenta are simulated self consistently. This is, as far as we know, the first theory based simulation of an L-H transition including the whole radius and not making any assumptions about where the barrier should be formed. Another remarkable feature is that we get H-mode gradients in agreement with the α – α{sub d} diagram of Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)]. Then, the feedback loop emerging from the simulations means that the L-H power threshold increases with the temperature at the separatrix. This is a main feature of the C-mod experiments [Hubbard et al., Phys. Plasmas 14, 056109 (2007)]. This is also why the power threshold depends on the direction of the grad B drift in the scrape off layer and also why the power threshold increases with the magnetic field. A further significant general H-mode feature is that the density is much flatter in H-mode thanmore » in L-mode.« less
Authors:
 [1]
  1. Department Applied Physics, Chalmers University of Technology and Euratom-VR Association, S41296 Gothenburg (Sweden)
Publication Date:
OSTI Identifier:
22403346
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 12; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; H-MODE PLASMA CONFINEMENT; HT-7 TOKAMAK; HT-7U TOKAMAK; L-MODE PLASMA CONFINEMENT; MAGNETIC FIELDS; PLASMA SCRAPE-OFF LAYER; SIMULATION