skip to main content

SciTech ConnectSciTech Connect

Title: How the “main condition” of phase stability can explain the effect of the velocity deviation of secondary electrons in DC-biased single-sided multipactors

In this work, a “main condition” for phase stability has been employed to investigate the effects of the velocity deviation of the electrons in DC-biased single-sided multipactors (MPs). In a previous study [M. Mostajeran, Phys. Plasmas 21, 053108 (2014)], a stability equation was derived, where the secondary electron was assumed to have zero initial velocity and the phase deviation from the resonant phase was considered. In this work, both deviations in phase and velocity from the resonant condition are taken into account, assuming nonzero initial velocity for the secondary electrons. Using the main condition for stability, it is shown that MP discharge can rise in situations, where large velocity deviations from initial velocity and large phase deviations from resonant phase exist. This is contrary to what can be predicted on the basis of the “simple stability condition.” This result is further confirmed by numerical simulations.
Authors:
 [1]
  1. Faculty of Physics, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)
Publication Date:
OSTI Identifier:
22403292
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 11; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; COMPUTERIZED SIMULATION; ELECTRONS; EQUATIONS; PHASE STABILITY; VELOCITY