skip to main content

Title: Effects of initial radius of the interface and Atwood number on nonlinear saturation amplitudes in cylindrical Rayleigh-Taylor instability

Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radius of the interface (r{sub 0}) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r{sub 0}/λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r{sub 0}/λ is large enough (r{sub 0}≫λ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs andmore » I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r{sub 0} can reduce the NSA of the second harmonic for arbitrary A at r{sub 0}≲2λ while increase it for A ≲ 0.6 at r{sub 0}≳2λ. Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design.« less
Authors:
 [1] ;  [2] ; ;  [3]
  1. Research Center of Computational Physics, Mianyang Normal University, Mianyang, 621000 (China)
  2. (China)
  3. LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)
Publication Date:
OSTI Identifier:
22403243
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 11; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; AMPLITUDES; CYLINDRICAL CONFIGURATION; DISTURBANCES; HARMONICS; INTERFACES; NONLINEAR PROBLEMS; PERTURBATION THEORY; RAYLEIGH-TAYLOR INSTABILITY; SATURATION; THERMONUCLEAR IGNITION