skip to main content

SciTech ConnectSciTech Connect

Title: Relative Hom-Hopf modules and total integrals

Let (H, α) be a monoidal Hom-Hopf algebra and (A, β) a right (H, α)-Hom-comodule algebra. We first investigate the criterion for the existence of a total integral of (A, β) in the setting of monoidal Hom-Hopf algebras. Also, we prove that there exists a total integral ϕ : (H, α) → (A, β) if and only if any representation of the pair (H, A) is injective in a functorial way, as a corepresentation of (H, α), which generalizes Doi’s result. Finally, we define a total quantum integral γ : H → Hom(H, A) and prove the following affineness criterion: if there exists a total quantum integral γ and the canonical map ψ : A⊗{sub B}A → A ⊗ H, a⊗{sub B}b ↦ β{sup −1}(a) b{sub [0]} ⊗ α(b{sub [1]}) is surjective, then the induction functor A⊗{sub B}−:ℋ{sup ~}(ℳ{sub k}){sub B}→ℋ{sup ~}(ℳ{sub k}){sub A}{sup H} is an equivalence of categories.
Authors:
 [1] ;  [2] ;  [3] ;  [4]
  1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025 (China)
  2. Department of Mathematics, Southeast University, Nanjing 210096 (China)
  3. School of Mathematics and Finance, Chuzhou University, Chuzhou 239000 (China)
  4. (China)
Publication Date:
OSTI Identifier:
22403093
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 56; Journal Issue: 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGEBRA; INDUCTION; INTEGRALS; MATHEMATICAL OPERATORS; QUANTUM GROUPS