skip to main content

Title: Breakdown of atmospheric pressure microgaps at high excitation frequencies

Microwave (mw) breakdown of atmospheric pressure microgaps is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions numerical model. The effect of both field electron emission and secondary electron emission (due to electron impact, ion impact, and primary electron reflection) from surfaces on the breakdown process is considered. For conditions where field emission is the dominant electron emission mechanism from the electrode surfaces, it is found that the breakdown voltage of mw microdischarge coincides with the breakdown voltage of direct-current (dc) microdischarge. When microdischarge properties are controlled by both field and secondary electron emission, breakdown voltage of mw microdischarge exceeds that of dc microdischarge. When microdischarge is controlled only by secondary electron emission, breakdown voltage of mw microdischarge is smaller than that of dc microdischarge. It is shown that if the interelectrode gap exceeds some critical value, mw microdischarge can be ignited only by electrons initially seeded within the gap volume. In addition, the influence of electron reflection and secondary emission due to electron impact is studied.
Authors:
;  [1]
  1. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712 (United States)
Publication Date:
OSTI Identifier:
22402975
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 17; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ATMOSPHERIC PRESSURE; BREAKDOWN; DIRECT CURRENT; ELECTRIC DISCHARGES; ELECTRIC POTENTIAL; ELECTRODES; ELECTRON EMISSION; ELECTRONS; EXCITATION; FIELD EMISSION; MICROWAVE RADIATION; MONTE CARLO METHOD; REFLECTION; SECONDARY EMISSION; SURFACES