skip to main content

SciTech ConnectSciTech Connect

Title: The elastic and thermoelectric properties of the Zintl compound Ca{sub 5}Al{sub 2}Sb{sub 6} under high pressure

The elastic and thermoelectric properties of Ca{sub 5}Al{sub 2}Sb{sub 6} under pressure are studied using ab initio calculation and semiclassical Boltzmann theory. The calculated elastic constants and minimum thermal conductivity indicate that Ca{sub 5}Al{sub 2}Sb{sub 6} exhibits an anisotropic structure and high thermoelectric performance. The size of the band gap shows a nonlinear change with increasing pressure. Based on the electronic structure, the calculated thermoelectric parameters show that the Seebeck coefficient has no obvious change under pressure, whereas the electrical conductivity improves with increasing pressure. Therefore, the power factor increases at an appropriate pressure of P = 2.6 GPa. P-type doping of Ca{sub 5}Al{sub 2}Sb{sub 6} may achieve better thermoelectric performance than n-type doping, in agreement with experiment. The anisotropic thermoelectric properties of Ca{sub 5}Al{sub 2}Sb{sub 6} indicate that the thermoelectric performance along the z-direction is superior to other directions. This is attributed to the combination of the large dispersion and high band degeneracy along the Γ-Z direction in the band structure.
Authors:
 [1] ;  [2] ; ;  [1] ;  [3]
  1. College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China)
  2. (China)
  3. Physics and Electronic College, Nanyang Normal University, Nanyang 473061, Henan (China)
Publication Date:
OSTI Identifier:
22402771
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 22; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANISOTROPY; DISPERSIONS; ELECTRIC CONDUCTIVITY; ELECTRONIC STRUCTURE; NONLINEAR PROBLEMS; POWER FACTOR; SEMICLASSICAL APPROXIMATION; THERMAL CONDUCTIVITY; THERMOELECTRIC PROPERTIES