skip to main content

Title: Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition

This paper reports the growth of silicon nanocrystals (SiNCs) from SiH4–O{sub 2} plasma chemistry. The formation of an oxynitride was avoided by using O{sub 2} instead of the widely used N{sub 2}O as precursor. X-ray photoelectron spectroscopy is used to prove the absence of nitrogen in the layers and determine the film stoichiometry. It is shown that the Si rich film growth is achieved via non-equilibrium deposition that resembles a interphase clusters mixture model. Photoluminescence and Fourier transformed infrared spectroscopy are used to monitor the formation process of the SiNCs, to reveal that the phase separation is completed at lower temperatures as for SiNCs based on oxynitrides. Additionally, transmission electron microscopy proves that the SiNC sizes are well controllable by superlattice configuration, and as a result, the optical emission band of the Si nanocrystal can be tuned over a wide range.
Authors:
; ; ;  [1] ;  [2] ;  [3] ;  [4]
  1. Laboratory for Nanotechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg im Breisgau (Germany)
  2. Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
  3. Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
  4. Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg (Germany)
Publication Date:
OSTI Identifier:
22402760
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 22; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CHEMICAL VAPOR DEPOSITION; FILMS; FOURIER TRANSFORM SPECTROMETERS; MIXTURES; NANOSTRUCTURES; NITROGEN; NITROUS OXIDE; PHOTOLUMINESCENCE; PLASMA; SILICON; SILICON OXIDES; TRANSMISSION ELECTRON MICROSCOPY; X-RAY PHOTOELECTRON SPECTROSCOPY