skip to main content

SciTech ConnectSciTech Connect

Title: High internal quantum efficiency ultraviolet to green luminescence peaks from pseudomorphic m-plane Al{sub 1−x}In{sub x}N epilayers grown on a low defect density m-plane freestanding GaN substrate

Structural and optical qualities of half-a-μm-thick m-plane Al{sub 1−x}In{sub x}N epilayers grown by metalorganic vapor phase epitaxy were remarkably improved via coherent growth on a low defect density m-plane freestanding GaN substrate prepared by hydride vapor phase epitaxy. All the epilayers unexceptionally suffer from uniaxial or biaxial anisotropic in-plane stress. However, full-width at half-maximum values of the x-ray ω-rocking curves were nearly unchanged as the underlayer values being 80 ∼ 150 arc sec for (101{sup ¯}0) and (101{sup ¯}2) diffractions with both 〈0001〉 and 〈112{sup ¯}0〉 azimuths, as long as pseudomorphic structure was maintained. Such Al{sub 1−x}In{sub x}N epilayers commonly exhibited a broad but predominant luminescence peak in ultraviolet (x ≤ 0.14) to green (x = 0.30) wavelengths. Its equivalent value of the internal quantum efficiency at room temperature was as high as 67% for x = 0.14 and 44% for x = 0.30. Because its high-energy cutoff commonly converged with the bandgap energy, the emission peak is assigned to originate from the extended near-band-edge states with strong carrier localization.
Authors:
; ; ; ; ;  [1] ; ;  [2]
  1. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan)
  2. Gallium Nitride Department, Mitsubishi Chemical Corporation, 1000 Higashi-Mamiana, Ushiku, Ibaraki 300-1295 (Japan)
Publication Date:
OSTI Identifier:
22402710
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 21; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; GALLIUM NITRIDES; LUMINESCENCE; NEUTRON DIFFRACTION; PEAKS; QUANTUM EFFICIENCY; SUBSTRATES; ULTRAVIOLET RADIATION; VAPOR PHASE EPITAXY; X RADIATION