skip to main content

SciTech ConnectSciTech Connect

Title: Calcium manganate: A promising candidate as buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems

We have systematically studied the feasibility of CaMnO{sub 3} thin film, an n-type perovskite, to be utilized as the buffer layer for hybrid halide perovskite photovoltaic-thermoelectric device. Locations of the conduction band and the valence band, spontaneous polarization performance, and optical properties were investigated. Results indicate the energy band of CaMnO{sub 3} can match up well with that of CH{sub 3}NH{sub 3}PbI{sub 3} on separating electron-hole pairs. In addition, the consistent polarization angle helps enlarge the open circuit voltage of the composite system. Besides, CaMnO{sub 3} film shows large absorption coefficient and low extinction coefficient under visible irradiation, demonstrating high carrier concentration, which is beneficial to the current density. More importantly, benign thermoelectric properties enable CaMnO{sub 3} film to assimilate phonon vibration from CH{sub 3}NH3PbI{sub 3}. All the above features lead to a bright future of CaMnO{sub 3} film, which can be a promising candidate as a buffer layer for hybrid halide perovskite photovoltaic-thermoelectric systems.
Authors:
; ;  [1] ;  [2] ; ; ; ; ;  [1]
  1. Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22402684
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 19; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BUFFERS; CALCIUM; HALIDES; OPTICAL PROPERTIES; PEROVSKITE; PHOTOVOLTAIC EFFECT; THERMOELECTRIC PROPERTIES; THIN FILMS