skip to main content

SciTech ConnectSciTech Connect

Title: The high temperature photoluminescence and optical absorption of undoped ZnO single crystals and thin films

The photoluminescence of undoped ZnO single crystals up to 1350 °C and the optical absorption of stress-relaxed, epitaxial ZnO thin films up to 1100 °C are reported. The photoluminescence intensity and power dependence with illumination flux are related to the crystal growth methods and stabilize after high temperature annealing. The observation of excitonic recombination at very high temperatures requires high illumination flux. It is found that the zero phonon line model reproduces the shift and the band gap narrowing as well as the free excitonic transition up to the cross-over with a defect level at 2.83 eV that occurs at 800 °C. A phenomenological model of the excitonic recombination band shape, taking account exciton-phonon losses and defect levels provides an excellent fit up to 2.2–2.4 eV (1100 °C). At these cross-over temperatures, an energy transfer is observed between the free exciton transition and defect transitions. However, at temperature above 1100 °C, the decrease of the band gap and the increase of thermal radiation, as well as the restrictions of our experimental set-up and particularly the illumination flux of the exciting laser, limit the analysis of the photoluminescence spectra measurements.
Authors:
 [1] ;  [2] ;  [1]
  1. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)
  2. (France)
Publication Date:
OSTI Identifier:
22402646
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 19; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION; DEFECTS; ENERGY TRANSFER; EPITAXY; LASERS; MONOCRYSTALS; PHOTOLUMINESCENCE; TEMPERATURE RANGE 1000-4000 K; THERMAL RADIATION; THIN FILMS; ZINC OXIDES