skip to main content

Title: Mechanisms of thermally induced threshold voltage instability in GaN-based heterojunction transistors

In this work, we attempt to reveal the underlying mechanisms of divergent V{sub TH}-thermal-stabilities in III-nitride metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) and MOS-Channel-HEMT (MOSC-HEMT). In marked contrast to MOSC-HEMT featuring temperature-independent V{sub TH}, MIS-HEMT with the same high-quality gate-dielectric/III-nitride interface and similar interface trap distribution exhibits manifest thermally induced V{sub TH} shift. The temperature-dependent V{sub TH} of MIS-HEMT is attributed to the polarized III-nitride barrier layer, which spatially separates the critical gate-dielectric/III-nitride interface from the channel and allows “deeper” interface trap levels emerging above the Fermi level at pinch-off. This model is further experimentally validated by distinct V{sub G}-driven Fermi level movements at the critical interfaces in MIS-HEMT and MOSC-HEMT. The mechanisms of polarized III-nitride barrier layer in influencing V{sub TH}-thermal-stability provide guidelines for the optimization of insulated-gate III-nitride power switching devices.
Authors:
; ; ; ;  [1]
  1. Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
Publication Date:
OSTI Identifier:
22402437
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 22; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DEPLETION LAYER; DIELECTRIC MATERIALS; ELECTRON MOBILITY; FERMI LEVEL; GALLIUM NITRIDES; HETEROJUNCTIONS; INTERFACES; OPTIMIZATION; SEMICONDUCTOR MATERIALS; TEMPERATURE DEPENDENCE; TRANSISTORS