skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-BRD-06: Dosimetric Cost of a GTV Margin for Simultaneous Integrated Intra- Prostatic Boost Treatments

Abstract

Purpose: Quantify the dosimetric cost for a margin around the MRI-defined high risk GTV for simultaneous integrated intra-prostatic boosts (SIIB) treated with RapidArc. Methods: For external beam radiotherapy of the prostate, a 3-7 mm PTV margin is typically used to account for setup and intra-fraction uncertainties after adjusting for inter-fraction motion. On the other hand, our current paradigm is to treat the MRI-defined high risk GTV with no margin. In this work, 11 patients treated SIIB (7 post-prostatectomy, 4 intact prostate) with RapidArc were re-planned with 1-5 mm margins around the GTV to quantify dosimetric effects. Two 358 degree, 10 MV RapidArcs were used to deliver 68 Gy (76.5 Gy boost) to the post-prostatectomy patients and 80 Gy (86 Gy boost) to the intact prostates. Paired, two tail t-tests were used to determine if there were any significant differences (p<0.05) in the total MUs and dosimetric parameters used to evaluate rectum, bladder, and PTV dose with and without margin. Results: The average GTV volume without margin was 8.1cc (2.8% of the PTV volume) while the average GTV volume with a 5 mm margin was 20.1cc (9.0% of the PTV volume). GTV volumes ranged from 0.2% of the PTV volume upmore » to 33.0%. Despite these changes in volume, the only statistical difference was found for the rectal V65 Gy with a 5 mm margin (18.6% vs. 19.4%; p-value = 0.026) when all patients were considered as a single group. No difference was found when analyzed as two groups. The rectum V40Gy, bladder V40Gy and V65Gy, PTV Dmax and D95% or the total MUs did not show any significant difference for any margin. Conclusion: A 4 mm margin on the high risk GTV is possible with no statistically significant change in dosimetry or total MUs. Further work will assess the appropriate margin required for intra-prostatic boosts.« less

Authors:
; ; ;  [1]
  1. University of Miami, Miami, FL (United States)
Publication Date:
OSTI Identifier:
22402318
Resource Type:
Journal Article
Journal Name:
Medical Physics
Additional Journal Information:
Journal Volume: 41; Journal Issue: 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0094-2405
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 60 APPLIED LIFE SCIENCES; BLADDER; DOSIMETRY; NMR IMAGING; PROSTATE; RADIOTHERAPY; RECTUM

Citation Formats

Studenski, M, Abramowitz, M, Dogan, N, and Pollack, A. SU-F-BRD-06: Dosimetric Cost of a GTV Margin for Simultaneous Integrated Intra- Prostatic Boost Treatments. United States: N. p., 2014. Web. doi:10.1118/1.4889060.
Studenski, M, Abramowitz, M, Dogan, N, & Pollack, A. SU-F-BRD-06: Dosimetric Cost of a GTV Margin for Simultaneous Integrated Intra- Prostatic Boost Treatments. United States. https://doi.org/10.1118/1.4889060
Studenski, M, Abramowitz, M, Dogan, N, and Pollack, A. 2014. "SU-F-BRD-06: Dosimetric Cost of a GTV Margin for Simultaneous Integrated Intra- Prostatic Boost Treatments". United States. https://doi.org/10.1118/1.4889060.
@article{osti_22402318,
title = {SU-F-BRD-06: Dosimetric Cost of a GTV Margin for Simultaneous Integrated Intra- Prostatic Boost Treatments},
author = {Studenski, M and Abramowitz, M and Dogan, N and Pollack, A},
abstractNote = {Purpose: Quantify the dosimetric cost for a margin around the MRI-defined high risk GTV for simultaneous integrated intra-prostatic boosts (SIIB) treated with RapidArc. Methods: For external beam radiotherapy of the prostate, a 3-7 mm PTV margin is typically used to account for setup and intra-fraction uncertainties after adjusting for inter-fraction motion. On the other hand, our current paradigm is to treat the MRI-defined high risk GTV with no margin. In this work, 11 patients treated SIIB (7 post-prostatectomy, 4 intact prostate) with RapidArc were re-planned with 1-5 mm margins around the GTV to quantify dosimetric effects. Two 358 degree, 10 MV RapidArcs were used to deliver 68 Gy (76.5 Gy boost) to the post-prostatectomy patients and 80 Gy (86 Gy boost) to the intact prostates. Paired, two tail t-tests were used to determine if there were any significant differences (p<0.05) in the total MUs and dosimetric parameters used to evaluate rectum, bladder, and PTV dose with and without margin. Results: The average GTV volume without margin was 8.1cc (2.8% of the PTV volume) while the average GTV volume with a 5 mm margin was 20.1cc (9.0% of the PTV volume). GTV volumes ranged from 0.2% of the PTV volume up to 33.0%. Despite these changes in volume, the only statistical difference was found for the rectal V65 Gy with a 5 mm margin (18.6% vs. 19.4%; p-value = 0.026) when all patients were considered as a single group. No difference was found when analyzed as two groups. The rectum V40Gy, bladder V40Gy and V65Gy, PTV Dmax and D95% or the total MUs did not show any significant difference for any margin. Conclusion: A 4 mm margin on the high risk GTV is possible with no statistically significant change in dosimetry or total MUs. Further work will assess the appropriate margin required for intra-prostatic boosts.},
doi = {10.1118/1.4889060},
url = {https://www.osti.gov/biblio/22402318}, journal = {Medical Physics},
issn = {0094-2405},
number = 6,
volume = 41,
place = {United States},
year = {Sun Jun 15 00:00:00 EDT 2014},
month = {Sun Jun 15 00:00:00 EDT 2014}
}