skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-19A-03: Dosimetric Advantages in Critical Structure Dose Sparing by Using a Multichannel Cylinder in High Dose Rate Brachytherapy to Treat Vaginal Cuff Cancer

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4889029· OSTI ID:22402287
; ; ; ; ;  [1]
  1. Willis-Knighton Cancer Center, Shreveport, LA (United States)

Purpose: The multichannel cylindrical vaginal applicator is a variation of traditional single channel cylindrical vaginal applicator. The multichannel applicator has additional peripheral channels that provide more flexibility in the planning process. The dosimetric advantage is to reduce dose to adjacent organ at risk (OAR) such as bladder and rectum while maintaining target coverage with the dose optimization from additional channels. Methods: Vaginal HDR brachytherapy plans are all CT based. CT images were acquired in 2 mm thickness to keep integrity of cylinder contouring. The CTV of 5mm Rind with prescribed treatment length was reconstructed from 5mm expansion of inserted cylinder. The goal was 95% of CTV covered by 95% of prescribed dose in both single channel planning (SCP)and multichannel planning (MCP) before proceeding any further optimization for dose reduction to critical structures with emphasis on D2cc and V2Gy . Results: This study demonstrated noticeable dose reduction to OAR was apparent in multichannel plans. The D2cc of the rectum and bladder were showing the reduced dose for multichannel versus single channel. The V2Gy of the rectum was 93.72% and 83.79% (p=0.007) for single channel and multichannel respectively (Figure 1 and Table 1). To assure adequate coverage to target while reducing the dose to the OAR without any compromise is the main goal in using multichannel vaginal applicator in HDR brachytherapy. Conclusion: Multichannel plans were optimized using anatomical based inverse optimization algorithm of inverse planning simulation annealing. The optimization solution of the algorithm was to improve the clinical target volume dose coverage while reducing the dose to critical organs such as bladder, rectum and bowels. The comparison between SCP and MCP demonstrated MCP is superior to SCP where the dwell positions were based on geometric array only. It concluded that MCP is preferable and is able to provide certain features superior to SCP.

OSTI ID:
22402287
Journal Information:
Medical Physics, Vol. 41, Issue 6; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English