skip to main content

Title: Variational method for the minimization of entropy generation in solar cells

In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.
Authors:
;  [1]
  1. Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
Publication Date:
OSTI Identifier:
22399400
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 13; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPUTERIZED SIMULATION; DESIGN; DIFFERENTIAL EQUATIONS; ENERGY LOSSES; ENTROPY; EQUILIBRIUM; FREE ENERGY; MINIMIZATION; RECOMBINATION; SOLAR CELLS; THERMODYNAMICS; TRANSPORT THEORY; VARIATIONAL METHODS