skip to main content

SciTech ConnectSciTech Connect

Title: Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers

The influence of a dilute In{sub x}Ga{sub 1-x}N (x ∼ 0.03) underlayer (UL) grown below a single In{sub 0.16}Ga{sub 0.84}N quantum well (SQW), within a light-emitting diode (LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than the LED without an UL, while the radiative recombination rates were nearly identical. This suggests that the improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.
Authors:
; ; ; ; ;  [1]
  1. Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
Publication Date:
OSTI Identifier:
22399398
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 13; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CAPACITANCE; CARRIER LIFETIME; CONCENTRATION RATIO; CURRENT DENSITY; DEEP LEVEL TRANSIENT SPECTROSCOPY; ELECTRIC POTENTIAL; ENERGY-LEVEL DENSITY; GALLIUM NITRIDES; INDIUM COMPOUNDS; LIGHT EMITTING DIODES; QUANTUM EFFICIENCY; QUANTUM WELLS; RECOMBINATION; VISIBLE RADIATION