skip to main content

Title: Incommensurate and commensurate modulations of Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd) tungsten bronzes and the ferroelectric domain structures

Incommensurate and commensurate structural modulations of Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd) tungsten bronze ceramics were investigated by using a cooling holder equipped transmission electron microscopy in the temperature range from 100 K to 363 K. The incommensurate modulation was observed in both Ba{sub 5}LaTi{sub 3}Nb{sub 7}O{sub 30} and Ba{sub 5}NdTi{sub 3}Nb{sub 7}O{sub 30} at room temperature, while there was a transition from incommensurate tilted structure to commensurate superstructure for Ba{sub 5}NdTi{sub 3}Nb{sub 7}O{sub 30} with decreasing temperature. The incommensurate and commensurate modulations were determined by the A-site occupancy of Ba and R cations. The A-site disorder resulted in larger incommensurability parameter δ and the diffusion of the satellite reflection spots. The effect of A-site disorder on the coupling between long-range dipolar order and the commensurate modulation was also discussed. The obvious ferroelectric 180° domains with spike-like shape parallel to c axis were observed for Ba{sub 5}NdTi{sub 3}Nb{sub 7}O{sub 30}, while no macro ferroelectric domain was determined for Ba{sub 5}LaTi{sub 3}Nb{sub 7}O{sub 30}.
Authors:
; ; ;  [1]
  1. Department of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China)
Publication Date:
OSTI Identifier:
22399390
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 13; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BARIUM COMPOUNDS; CATIONS; CERAMICS; COOLING; COUPLING; DIFFUSION; DOMAIN STRUCTURE; FERROELECTRIC MATERIALS; LANTHANUM COMPOUNDS; MODULATION; NEODYMIUM COMPOUNDS; NIOBATES; REFLECTION; TEMPERATURE RANGE 0273-0400 K; TITANIUM COMPOUNDS; TRANSMISSION ELECTRON MICROSCOPY; TUNGSTEN BRONZE