skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low temperature magneto-dielectric measurements on BiFeO{sub 3} lightly substituted by cobalt

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4916714· OSTI ID:22399386

Dielectric and magnetodielectric measurements are done on BiFe{sub 1−x}Co{sub x}O{sub 3}: x = 0, 0.01, and 0.02 in the temperature range 70–300 K and up to magnetic field 1.3 T. The dielectric data are well described by Haverliak–Negami expression plus an additional term for the Maxwell Wagner (MW) type relaxations, whose contribution is dominant near room temperature. The parameters obtained from the fitting of data using the above mentioned expression, suggest slowing down of relaxation and approach towards ideal Debye type relaxations, as the temperature is lowered. The dielectric relaxations obey polaronic variable range hopping model with distinct activation energies (E{sub a}) in the extrinsic (6.67T{sup 3/4 }meV) and intrinsic (2.88T{sup 3/4 }meV) regions for the parent sample (x = 0), and thus a distinct transition from extrinsic to intrinsic behavior is seen at 215 K while lowering the temperature. This distinct transition is missing for Co substituted samples probably due to the extrinsic region values of E{sub a} (3.42T{sup 3/4 }meV and 2.42T{sup 3/4 }meV for x = 0.01 and 0.02, respectively) comparable to that of the intrinsic region (see x = 0). The magnetodielectric measurement shows positive magnetodielectricity (MD) in the intrinsic region (T < 215 K for x = 0) and negative MD in the extrinsic region (T > 215 K for x = 0). The extrinsic region is found to be dominated by MW and magnetoresistance effects, whereas MD in intrinsic regions is due to the spin reorientation transitions. The Co substitution is found to increase the extrinsic and non-Debye contributions to dielectricity, which becomes so large that no spin reorientation transitions are seen in x = 0.02 sample. The pyroelectric active region in x = 0 is found to be dominated by the diffusive behavior having contribution of the form ω{sup −0.5}.

OSTI ID:
22399386
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 13; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English