skip to main content

SciTech ConnectSciTech Connect

Title: Fourfold symmetric planar Hall effect in epitaxial La{sub 1−x}Sr{sub x}CoO{sub 3} thin films

The effect of Sr concentration on the planar Hall effect (PHE) in epitaxial magnetic phase separated La{sub 1−x}Sr{sub x}CoO{sub 3} (0.07 ≤ x ≤ 0.60) thin films was studied systematically. It was found that crystalline anisotropy and spin-orbital coupling are the main contributions to the unexpected fourfold symmetric PHE. The uniaxial anisotropy field was given by H{sub uni} = 70 Oe and cubic anisotropic field H{sub cub} = 143 Oe, respectively. The magnetic anisotropy was weakened by Sr doping, which corresponds with the disappearance of the fourfold symmetry in PHE with the increasing Sr concentration. The first principle calculations proved that the contribution of Co-d orbitals to the magnetic anisotropy strongly depends on the Sr concentration. e{sub g}−d{sub x{sup 2}−y{sup 2}} and e{sub g}−d{sub 3z{sup 2}−r{sup 2}} orbitals play a dominant role in the magnetic anisotropy of the samples with x = 0.125, 0.25, while the t{sub 2g}−d{sub xy}, d{sub yz}, d{sub xz} orbitals contribute mainly to the magnetic anisotropy of the samples with x = 0.375, 0.5, 0.625.
Authors:
; ;  [1]
  1. Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China)
Publication Date:
OSTI Identifier:
22399383
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 13; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANISOTROPY; COBALT OXIDES; CONCENTRATION RATIO; COUPLING; EPITAXY; HALL EFFECT; LANTHANUM COMPOUNDS; SPIN; STRONTIUM COMPOUNDS; SYMMETRY; THIN FILMS