skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi{sub 6−x∕3}Fe{sub 2}Ti{sub 3−2x}(WCo){sub x}O{sub 18} (0 ≤ x ≤ 0.15)

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4915089· OSTI ID:22399305
; ; ; ; ; ;  [1];  [2]
  1. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)
  2. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China)

We investigate the structural, magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi{sub 6−x∕3}Fe{sub 2}Ti{sub 3−2x}(WCo){sub x}O{sub 18} (0 ≤ x ≤ 0.15). The room-temperature weak ferromagnetism is observed for the W/Co co-doped samples. The results of the dielectric constant ε{sub r}, complex impedance Z″, the dc conductivity σ{sub dc}, and hopping frequency f{sub H} manifest that the dielectric relaxation of the x = 0 sample and the doped samples in the dielectric anomaly region (450–750 K) can be ascribed to the trap-controlled ac conduction around the doubly ionized oxygen vacancies and the localized hopping process of oxygen vacancies, respectively. The scaling behaviors reveal that the dynamic process of both electrons in the x = 0 sample and oxygen vacancies in the doped samples is temperature independent. The ferroelectric Curie-temperature T{sub c} decreases slightly from 973 K to 947 K with increasing the doping level of W/Co. In addition, the dielectric loss exhibits a dielectric relaxation above 800 K with the rather large activation energies (1.95 eV ≤ E{sub a} ≤ 2.72 eV)

OSTI ID:
22399305
Journal Information:
Journal of Applied Physics, Vol. 117, Issue 11; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English