skip to main content

SciTech ConnectSciTech Connect

Title: Study of the effects of metalloid elements (P, C, B) on Fe-based amorphous alloys by ab initio molecular dynamics simulations

In order to understand the effects of the metalloid elements M (M: P, C, B) on the atomic structure, glass formation ability (GFA) and magnetic properties of Fe-based amorphous alloys, Fe{sub 80}P{sub 13}C{sub 7}, Fe{sub 80}P{sub 14}B{sub 6} and Fe{sub 80}B{sub 14}C{sub 6} amorphous alloys are chosen to study through first-principle simulations in the present work. The atomic structure characteristic of the three amorphous alloys is investigated through the pair distribution functions (PDFs) and Voronoi Polyhedra (VPs) analyses. The PDFs and VPs analyses suggest that the GFA of the three alloys dropped in the order of Fe{sub 80}P{sub 13}C{sub 7}, Fe{sub 80}P{sub 14}B{sub 6}, and Fe{sub 80}B{sub 14}C{sub 6}, which is well consistent with the experimental results. The density of state (DOS) of the three amorphous alloys is calculated to investigate their magnetic properties. Based on the DOS analysis, the average magnetic moment of Fe atom in Fe{sub 80}P{sub 13}C{sub 7} and Fe{sub 80}P{sub 14}B{sub 6} amorphous alloys can be estimated to be 1.71 μ{sub B} and 1.70 μ{sub B}, respectively, which are in acceptable agreement with the experimental results. However, the calculated average magnetic moment of Fe atom in Fe{sub 80}B{sub 14}C{sub 6} amorphous alloy is about 1.62 μ{sub B}, which ismore » far less than the experimental result.« less
Authors:
; ;  [1]
  1. School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China)
Publication Date:
OSTI Identifier:
22399265
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 117; Journal Issue: 10; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AMORPHOUS STATE; BORON COMPOUNDS; CARBON COMPOUNDS; COMPUTERIZED SIMULATION; DENSITY OF STATES; DISTRIBUTION FUNCTIONS; GLASS; IRON BASE ALLOYS; MAGNETIC MOMENTS; MAGNETIC PROPERTIES; MOLECULAR DYNAMICS METHOD; PHOSPHORUS COMPOUNDS