skip to main content

SciTech ConnectSciTech Connect

Title: Evolution of iron-containing defects during processing of Si solar cells

The formation of iron-containing defects was studied during the fabrication process of a Si solar cell. Three Cz-Si crystals with different iron content in the feedstock were grown for the study. Iron-containing defects in and near-to the n{sup +}p-junction volume (NJV) of the cells are formed directly after phosphorus diffusion due to an inflow of iron atoms from the dissolving iron-silicide precipitates. These NJV-defects strongly affect the dark saturation current of the junctions. Partial dissolution or gettering of the NJV-defects during formation of the antireflection coating is accompanied by an increase in defect concentrations in the bulk of the cell. Further deterioration of bulk carrier lifetime during the formation of electrical contacts is related to the partial dissolution of remaining iron-silicide precipitates during the firing process. A general description of the defect evolution in iron-contaminated wafers during solar cell processing is presented and possible strategies for reducing the influence of iron-containing defects are proposed.
Authors:
;  [1] ; ;  [2]
  1. Technische Universität Dresden, 01062 Dresden (Germany)
  2. CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)
Publication Date:
OSTI Identifier:
22399191
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 116; Journal Issue: 24; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CARRIER LIFETIME; CONCENTRATION RATIO; CRYSTALS; DIFFUSION; ELECTRIC CONTACTS; ELECTRIC CURRENTS; FABRICATION; GETTERING; IRON; IRON SILICIDES; PHOSPHORUS; PRECIPITATION; SEMICONDUCTOR JUNCTIONS; SILICON SOLAR CELLS