skip to main content

Title: Stranski-Krastanov InN/InGaN quantum dots grown directly on Si(111)

The authors discuss and demonstrate the growth of InN surface quantum dots on a high-In-content In{sub 0.73}Ga{sub 0.27}N layer, directly on a Si(111) substrate by plasma-assisted molecular beam epitaxy. Atomic force microscopy and transmission electron microscopy reveal uniformly distributed quantum dots with diameters of 10–40 nm, heights of 2–4 nm, and a relatively low density of ∼7 × 10{sup 9} cm{sup −2}. A thin InN wetting layer below the quantum dots proves the Stranski-Krastanov growth mode. Near-field scanning optical microscopy shows distinct and spatially well localized near-infrared emission from single surface quantum dots. This holds promise for future telecommunication and sensing devices.
Authors:
; ; ; ; ;  [1] ; ; ;  [2] ;  [2] ;  [3] ;  [4] ;  [5] ;  [6]
  1. Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)
  2. Dep. Ciencia de los Materiales e IM y QI., F. Ciencias, Universidad de Cádiz, 11510-Puerto Real, Cádiz (Spain)
  3. (Spain)
  4. Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 (Germany)
  5. Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg (Germany)
  6. L-NESS and Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy)
Publication Date:
OSTI Identifier:
22399125
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMIC FORCE MICROSCOPY; CRYSTAL GROWTH; CRYSTAL STRUCTURE; GALLIUM NITRIDES; INDIUM NITRIDES; LAYERS; MOLECULAR BEAM EPITAXY; PHOTON EMISSION; PLASMA; QUANTUM DOTS; SCANNING LIGHT MICROSCOPY; SILICON; SUBSTRATES; SURFACES; TRANSMISSION ELECTRON MICROSCOPY