skip to main content

Title: Computational imaging using a mode-mixing cavity at microwave frequencies

We present a 3D computational imaging system based on a mode-mixing cavity at microwave frequencies. The core component of this system is an electrically large rectangular cavity with one corner re-shaped to catalyze mode mixing, often called a Sinai Billiard. The front side of the cavity is perforated with a grid of periodic apertures that sample the cavity modes and project them into the imaging scene. The radiated fields are scattered by the scene and are measured by low gain probe antennas. The complex radiation patterns generated by the cavity thus encode the scene information onto a set of frequency modes. Assuming the first Born approximation for scattering dynamics, the received signal is processed using computational methods to reconstruct a 3D image of the scene with resolution determined by the diffraction limit. The proposed mode-mixing cavity is simple to fabricate, exhibits low losses, and can generate highly diverse measurement modes. The imaging system demonstrated in this letter can find application in security screening and medical diagnostic imaging.
Authors:
; ;  [1] ; ; ; ;  [2]
  1. Xlim Research Institute, University of Limoges, 87060 Limoges (France)
  2. Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)
Publication Date:
OSTI Identifier:
22399071
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 19; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ANTENNAS; APERTURES; BORN APPROXIMATION; DIFFRACTION; GAIN; IMAGES; LOSSES; MICROWAVE RADIATION; PERIODICITY; RESOLUTION