skip to main content

Title: Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films

A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin films.
Authors:
; ;  [1] ; ;  [2] ;  [3] ;  [4] ;  [1] ;  [5]
  1. Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany)
  2. IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, Tres Cantos, E-28760 Madrid (Spain)
  3. Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)
  4. Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain)
  5. (Germany)
Publication Date:
OSTI Identifier:
22398908
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 15; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; DIELECTRIC MATERIALS; EV RANGE; EXCITATION; HOLES; KERR EFFECT; MAGNETO-OPTICAL EFFECTS; NICKEL; PERIODICITY; PERMITTIVITY; PHOTONS; PLASMONS; RED SHIFT; RESONANCE; ROTATION; SURFACES; THIN FILMS