skip to main content

SciTech ConnectSciTech Connect

Title: Spin orbit torque based electronic neuron

A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.
Authors:
; ; ;  [1]
  1. School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)
Publication Date:
OSTI Identifier:
22398874
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 14; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ELECTRIC CURRENTS; IMAGES; LAYERS; L-S COUPLING; MAGNETIZATION; MAGNETS; NANOSTRUCTURES; NERVE CELLS; NEURAL NETWORKS; ORIENTATION; TORQUE; TRANSFER FUNCTIONS