skip to main content

Title: Photoresponsive properties of ultrathin silicon nanowires

Functional silicon nanowires (SiNWs) are promising building blocks in the design of highly sensitive photodetectors and bio-chemical sensors. We systematically investigate the photoresponse properties of ultrathin SiNWs (20 nm) fabricated using a size-reduction method based on e-beam lithography and tetramethylammonium hydroxide wet-etching. The high-quality SiNWs were able to detect light from the UV to the visible range with excellent sensitivity (∼1 pW/array), good time response, and high photoresponsivity (R ∼ 2.5 × 10{sup 4 }A/W). Improvement of the ultrathin SiNWs' photoresponse has been observed in comparison to 40 nm counter-part nanowires. These properties are attributable to the predominance surface-effect due to the high surface-to-volume ratio of ultrathin SiNWs. Long-term measurements at different temperatures in both the forward and reverse bias directions demonstrated the stability and reliability of the fabricated device. By sensitizing the fabricated SiNW arrays with cadmium telluride quantum dots (QDs), hybrid QD SiNW devices displayed an improvement in photocurrent response under UV light, while preserving their performance in the visible light range. The fast, stable, and high photoresponse of these hybrid nanostructures is promising towards the development of optoelectronic and photovoltaic devices.
Authors:
; ; ;  [1] ; ; ;  [2]
  1. Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, MM Bldg., Mawson Lakes Blvd., Mawson Lakes, South Australia 5095 (Australia)
  2. Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 2.4v Bldg., Wilhelm-Johnen St., Jülich 52428 (Germany)
Publication Date:
OSTI Identifier:
22395446
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 23; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; CADMIUM TELLURIDES; COMPARATIVE EVALUATIONS; ELECTRON BEAMS; ETCHING; NANOWIRES; PHOTODETECTORS; PHOTOVOLTAIC EFFECT; QUANTUM DOTS; SENSITIVITY; SENSORS; SILICON; SURFACES; ULTRAVIOLET RADIATION; VISIBLE RADIATION