skip to main content

Title: Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.
Authors:
; ; ; ; ;  [1]
  1. Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)
Publication Date:
OSTI Identifier:
22392502
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 86; Journal Issue: 5; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 36 MATERIALS SCIENCE; CRYSTALS; DIAGRAMS; ELECTRIC CONDUCTIVITY; ELECTRONIC STRUCTURE; FILMS; IRON SELENIDES; MORPHOLOGY; NOISE; PROBES; SCANNING TUNNELING MICROSCOPY; STRONTIUM TITANATES; SURFACES; TUNNEL EFFECT