skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compliance and control characteristics of an additive manufactured-flexure stage

Journal Article · · Review of Scientific Instruments
DOI:https://doi.org/10.1063/1.4918982· OSTI ID:22392478
;  [1]
  1. Department of Mechanical Engineering, University of South Carolina, 300 Main St., Columbia, South Carolina 29208 (United States)

This paper presents a compliance and positioning control characteristics of additive manufactured-nanopositioning system consisted of the flexure mechanism and voice coil motor (VCM). The double compound notch type flexure stage was designed to utilize the elastic deformation of two symmetrical four-bar mechanisms to provide a millimeter-level working range. Additive manufacturing (AM) process, stereolithography, was used to fabricate the flexure stage. The AM stage was inspected by using 3D X-ray computerized tomography scanner: air-voids and shape irregularity. The compliance, open-loop resonance peak, and damping ratio of the AM stage were measured 0.317 mm/N, 80 Hz, and 0.19, respectively. The AM stage was proportional-integral-derivative positioning feedback-controlled and the capacitive type sensor was used to measure the displacement. As a result, the AM flexure mechanism was successfully 25 nm positioning controlled within 500 μm range. The resonance peak was found approximately at 280 Hz in closed-loop. This research showed that the AM flexure mechanism and the VCM can provide millimeter range with high precision and can be a good alternative to an expensive metal-based flexure mechanism and piezoelectric transducer.

OSTI ID:
22392478
Journal Information:
Review of Scientific Instruments, Vol. 86, Issue 4; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0034-6748
Country of Publication:
United States
Language:
English