skip to main content

Title: Viable chemical approach for patterning nanoscale magnetoresistive random access memory

A reactive ion etching process with alternating Cl{sub 2} and H{sub 2} exposures has been shown to chemically etch CoFe film that is an integral component in magnetoresistive random access memory (MRAM). Starting with systematic thermodynamic calculations assessing various chemistries and reaction pathways leading to the highest possible vapor pressure of the etch products reactions, the potential chemical combinations were verified by etch rate investigation and surface chemistry analysis in plasma treated CoFe films. An ∼20% enhancement in etch rate was observed with the alternating use of Cl{sub 2} and H{sub 2} plasmas, in comparison with the use of only Cl{sub 2} plasma. This chemical combination was effective in removing metal chloride layers, thus maintaining the desired magnetic properties of the CoFe films. Scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy showed visually and spectroscopically that the metal chloride layers generated by Cl{sub 2} plasma were eliminated with H{sub 2} plasma to yield a clean etch profile. This work suggests that the selected chemistries can be used to etch magnetic metal alloys with a smooth etch profile and this general strategy can be applied to design chemically based etch processes to enable the fabrication of highly integrated nanoscale MRAM devices.
Authors:
; ; ;  [1]
  1. Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States)
Publication Date:
OSTI Identifier:
22392141
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 33; Journal Issue: 2; Other Information: (c) 2015 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING; ALLOYS; CHLORINE; COMPARATIVE EVALUATIONS; ETCHING; FABRICATION; FILMS; HYDROGEN; MAGNETIC PROPERTIES; MAGNETORESISTANCE; METALS; NANOSTRUCTURES; PLASMA; SCANNING ELECTRON MICROSCOPY; VAPOR PRESSURE; X-RAY SPECTROSCOPY