skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth and electrical characterization of two-dimensional layered MoS{sub 2}/SiC heterojunctions

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4901048· OSTI ID:22392039
; ; ;  [1]; ;  [2];  [1]
  1. Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)
  2. Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States)

The growth and electrical characterization of the heterojunction formed between two-dimensional (2D) layered p-molybdenum disulfide (MoS{sub 2}) and nitrogen-doped 4H silicon carbide (SiC) are reported. The integration of 2D semiconductors with the conventional three-dimensional (3D) substrates could enable semiconductor heterostructures with unprecedented properties. In this work, direct growth of p-type MoS{sub 2} films on SiC was demonstrated using chemical vapor deposition, and the MoS{sub 2} films were found to be high quality based on x-ray diffraction and Raman spectra. The resulting heterojunction was found to display rectification and current-voltage characteristics consistent with a diode for which forward conduction in the low-bias region is dominated by multi-step recombination tunneling. Capacitance-voltage measurements were used to determine the built-in voltage for the p-MoS{sub 2}/n-SiC heterojunction diode, and we propose an energy band line up for the heterostructure based on these observations. The demonstration of heterogeneous material integration between MoS{sub 2} and SiC enables a promising new class of 2D/3D heterostructures.

OSTI ID:
22392039
Journal Information:
Applied Physics Letters, Vol. 105, Issue 20; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English