skip to main content

SciTech ConnectSciTech Connect

Title: Characterization of amorphous multilayered ZnO-SnO{sub 2} heterostructure thin films and their field effect electronic properties

Multilayered ZnO-SnO{sub 2} heterostructure thin films were produced using pulsed laser ablation of pie-shaped ZnO-SnO{sub 2} oxides target, and their structural and field effect electronic transport properties were investigated as a function of the thickness of the ZnO and SnO{sub 2} layers. The films have an amorphous multilayered heterostructure composed of the periodic stacking of the ZnO and SnO{sub 2} layers. The field effect electronic properties of amorphous multilayered ZnO-SnO{sub 2} heterostructure thin film transistors (TFTs) are highly dependent on the thickness of the ZnO and SnO{sub 2} layers. The highest electron mobility of 37 cm{sup 2}/V s, a low subthreshold swing of a 0.19 V/decade, a threshold voltage of 0.13 V, and a high drain current on-to-off ratio of ∼10{sup 10} obtained for the amorphous multilayered ZnO(1.5 nm)-SnO{sub 2}(1.5 nm) heterostructure TFTs. These results are presumed to be due to the unique electronic structure of an amorphous multilayered ZnO-SnO{sub 2} heterostructure film consisting of ZnO, SnO{sub 2}, and ZnO-SnO{sub 2} interface layers.
Authors:
; ; ; ; ; ; ;  [1]
  1. Smart I/O Control Device Research Section, Electronics and Telecommunications Research Institute, 158 Kajeogno, Yuseong-gu, Daejeon 305-700 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22391993
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 20; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ABLATION; ELECTRIC POTENTIAL; ELECTRON MOBILITY; ELECTRONIC STRUCTURE; LASERS; LAYERS; PERIODICITY; PULSES; THICKNESS; THIN FILMS; TIN OXIDES; TRANSISTORS; ZINC OXIDES