skip to main content

Title: Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon

Hexagonal boron nitride (h-BN) is an attractive substrate for graphene, as the interaction between these materials is weak enough for high carrier mobility to be retained in graphene but strong enough to allow for some epitaxial relationship. We deposited graphene on exfoliated h-BN by molecular beam epitaxy (MBE), we analyzed the atomistic details of the process by ab initio density functional theory (DFT), and we linked the DFT and MBE results by random walk theory. Graphene appears to nucleate around defects in virgin h-BN. The DFT analysis reveals that sticking of carbon to perfect h-BN is strongly reduced by desorption, so that pre-existing seeds are needed for the nucleation. The dominant nucleation seeds are C{sub N}C{sub B} and O{sub N}C{sub N} pairs and B{sub 2}O{sub 3} inclusions in the virgin substrate.
Authors:
; ; ;  [1]
  1. IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)
Publication Date:
OSTI Identifier:
22391941
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 19; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BORATES; BORON NITRIDES; BORON OXIDES; CARRIER MOBILITY; CRYSTAL DEFECTS; DENSITY FUNCTIONAL METHOD; GRAPH THEORY; GRAPHENE; MOLECULAR BEAM EPITAXY; RANDOMNESS; SUBSTRATES