skip to main content

Title: Charge transport in single CuO nanowires

Charge transport in single crystal, p-type cupric oxide (CuO) nanowire (NW) was studied through temperature based (120 K–400 K) current-voltage measurements. CuO NW with a diameter of 85 nm was attached to Au electrodes 2.25 μm apart, using dielectrophoresis. At low electrical field (<0.89 × 10{sup 3 }V/cm), an ohmic conduction is observed with an activation energy of 272 meV. The injected electrons fill traps with an average energy, E{sub T} = 26.6 meV and trap density, N{sub T} = 3.4 × 10{sup 15 }cm{sup −3}. After the traps are saturated, space charge limited current mechanism becomes dominant. For 120 K ≤ T ≤ 210 K phonon scattering limits mobility. For T ≥ 220 K, a thermally activated mobility is observed and is attributed to small polaron hopping with an activation energy of 44 meV. This mechanism yields a hole mobility of 0.0015 cm{sup 2}/V s and an effective hole concentration of 4 × 10{sup 18 }cm{sup −3} at 250 K.
Authors:
; ; ; ;  [1]
  1. Department of Mechanical Engineering and Materials Science, One Brookings Drive, Washington University, St. Louis, Missouri 63130 (United States)
Publication Date:
OSTI Identifier:
22391918
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 105; Journal Issue: 18; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACTIVATION ENERGY; CHARGE TRANSPORT; COPPER OXIDES; ELECTRIC FIELDS; ELECTRODES; ELECTRONS; HOLE MOBILITY; MONOCRYSTALS; NANOWIRES; PHONONS; SCATTERING; SPACE CHARGE; TEMPERATURE RANGE 0065-0273 K; TEMPERATURE RANGE 0273-0400 K